Compact moving least squares: An optimization framework for generating high-order compact meshless discretizations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact moving least squares: An optimization framework for generating high-order compact meshless discretizations

A generalization of the optimization framework typically used in moving least squares is presented that provides high-order approximation while maintaining compact stencils and a consistent treatment of boundaries. The approach, which we refer to as compact moving least squares, resembles the capabilities of compact finite differences but requires no structure in the underlying set of nodes. An...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

High-order Least Squares Identification

In order to ensure that the estimates of system parameters are unbiased and efficient, most identification schemes including the Prediction Error Method (PEM), and the Subspace Method (SM), are based on minimizing the residual of the Kalman filter, and not the equation error (associated with system model) as the residual is a zero mean white noise process whereas the equation error is coloured ...

متن کامل

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

Institute for Mathematical Physics Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares

3 We consider commuting squares of nite dimensional von Neumann algebras having the algebra of complex numbers in the lower left corner. Examples include the vertex models, the spin models (in the sense of subfactor theory) and the commuting squares associated to nite dimensional Kac algebras. To any such commuting square we associate a compact Kac algebra and we compute the corresponding subfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2016

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2016.08.045